Základní metody integrace
Přihlásit se
Základní metody integrace (1/17) · 3:52

Odvození vzorce pro integraci per partes Metoda integrace per partes vychází ze vzorce na derivaci součinu. Ten již známe, pojďme si ji proto odvodit.

Navazuje na Primitivní funkce a integrály.
V tomto videu si zopakujeme pravidlo derivace součinu funkcí, které jste se pravděpodobně nedávno naučili. A z něj pak odvodíme vzorec pro integraci per partes, který můžeme vnímat jako obrácené pravidlo derivace součinu funkcí. Integrace per partes. Takže řekněme, že začneme s funkcí, kterou můžeme vyjádřit jako součin f(x)... Kterou můžeme vyjádřit jako součin dvou funkcí, f(x) krát g(x). Teď si tuto funkci zderivujme, uplatněme tento operátor derivace. Pouze opakování pravidla derivace součinu. Bude to derivace první funkce krát druhá funkce. Takže to bude f... Ne, udělám to modře. Bude to f... Tohle není modrá. Bude to f'(x) krát g(x)... To není stejná barva. Krát g(x) plus první funkce krát derivace druhé, plus první funkce f(x) krát derivace druhé. Toto je jen opakování. Derivace první funkce krát druhá funkce plus první funkce krát derivace druhé funkce. Teď zintegrujme obě strany rovnice. Když zintegrujeme toto vlevo, dostaneme f(x) krát g(x). Nebudeme zatím řešit konstantu. Můžeme ji pro teď vynechat. A to bude rovno... Jaký je integrál tohoto? To bude integrál f'(x) krát g(x) dx plus integrál f(x) g'(x) dx. Teď spočítáme toto tady. A abych to vypočítal, musím od toho odečíst toto. Musím to odečíst od obou stran. A pak když to odečtu od obou stran, dostanu f(x) krát g(x) minus toto, minus integrál f'(x) g(x)... Udělám to růžově. g(x) dx. A to je rovno tomu, co chci spočítat, je to rovno integrálu f(x) g'(x) dx. A aby to bylo jasnější, prohodím strany rovnice. Takže to zkopíruju a vložím. A je to. A pak zkopíruju a vložím tu druhou stranu. Zkopíruju a vložím. Jen prohazuju strany, abych to dostal ve tvaru, který potom častěji uvidíte v učebnicích o diferenciálním počtu. Toto je tedy vzorec pro integraci per partes. Dám to do rámečku. V tradiční učebnici to často uvidíte v rámečku. Takže já to udělám stejně. Takže toto nám říká, že pokud máme integrál ve tvaru f(x) krát derivace nějaké jiné funkce, můžeme použít tento vzorec. Můžete namítnout, že to nevypadá moc užitečně. Prvně musím přijít na to, že ta funkce je v takovém tvaru. A pak tam ještě stále mám integrál. Ale v dalším videu uvidíme, že nám to opravdu pomůže zjednodušit hromadu výrazů, které budeme chtít zintegrovat.
video