Derivace funkce II
Přihlásit se
Derivace funkce II (3/23) · 3:54

Derivace mocninných funkcí Každý základní typ funkce má své pravidlo pro derivování. Pojďme si ukázat, jak to funguje u mocninných funkcí.

Navazuje na Derivace funkce.
V tomto videu budeme mluvit o derivaci mocninné funkce, to nám hodně usnadňuje počítání derivací, hlavně derivace polynomů. Už nejspíš znáte definici derivace. Limita pro x jdoucí k 0 výrazu: f(x plus Δx) minus f(x), to vše lomeno Δx. Je to vlastně jen hledání směrnice tečny v daném bodě. Uvidíte, že derivace mocninné funkce je užitečná, nebudeme muset upravovat tyhle, někdy komplikované, limity. Derivaci si nebudeme v tomto videu dokazovat, jen si ukážeme, jak se používá a v dalších videích zjistíme, proč tomu tak je, a také si ji dokážeme. Tato derivace mocninné funkce nám říká, že pokud máme funkci f(x) rovnou nějaké mocnině x, tedy (x na n), kde n není 0. N může být cokoliv kromě nuly, nemusí být ani celé číslo. Derivace mocninné funkce nám říká, že derivace tohoto f'(x) je rovno n krát… Jen dáte mocninu před funkci. Je to n krát x a mocninu u x snížíte o 1. Takže f'(x) se rovná n krát x na (n minus 1). Pojďme si udělat pár příkladů, abychom si byli jisti, že to dává smysl. Tak řekněme, že f(x) se bude rovnat x na druhou. Co bude podle derivace mocninné funkce f'(x)? V tomto případě je n rovno 2, takže dáme 2 dopředu: 2 krát x na (2 minus 1). To tedy bude 2 krát (x na prvou), což je prostě 2x. Celkem jednoduché. Teď mějme funkci g(x) se rovná x na třetí. Co bude derivace g(x)? N je 3, jenom zopakujeme postup. Asi vám to připadá až směšně přímočaré. Tohle tedy bude 3 krát x na (3 minus 1) neboli 3x na druhou. A to je vše! V dalším videu budeme řešit, proč tomu tak je. Udělejme další příklad, abychom ukázali, že to neplatí pouze pro kladná celá čísla. Můžeme mít třeba funkci h(x), které se rovná x na (-100). Co říká derivace mocninné funkce? N bude -100, takže to bude: -100 krát x na (-100 minus 1), což je -100 krát x na (-101). Udělejme ještě jeden. Mějme funkci z(x), která se rovná x na 2,571. Opět chceme najít derivaci. A znovu nám derivace mocninné funkce usnadní život, n je 2,571, takže to bude 2,571 krát x na (2,571 minus 1). To se rovná, musím si posunout stránku, 2,571 krát x na 1,571. Snad se vám to líbilo. V dalších videích ukážeme další vlastnosti derivací, a zjistíme, proč tato derivace dává smysl, a pak si ji pro pár případů dokážeme.
video